
Enhanced Query Optimization Using R Tree
Variants in a Map Reduce Framework for

Storing Spatial Data
 Vaishnavi S 1, Subhashini K 2, Sangeetha K 3, Nalayini C.M 4

1,2,3 B.Tech Information Technology, Velammal Engineering College,Chennai, TamilNadu, India.
4 Velammal Engineering College,Chennai, TamilNadu, India.

ABSRACT: The Map-reduce has become one of the inevitable
programming framework for developing distributed data storage
and information retrieval (IR) [1]. Efficient method for mining data
and its fast retrieval has become the key concern over years.
Various indexing mechanisms have been developed in Hadoop
Map-reduce framework, an open-source implementation of
Google. The framework consist of two basic functions- the map()
function which partition the input into smaller sub-problems and
distribute them to worker nodes, the reduce() function which
aggregate the sub-outputs from the worker nodes to retrieve the
final output. Map-reduce possess certain benefits compared to
traditional file system viz locality optimization, very large
computation and so on. Hadoop Distributed File System(HDFS)
use B+ tree and various other indexing mechanisms where the
storage and optimized retrieval of spatial data is an issue[2].
This paper provide an intuitive approach to incorporate Hilbert R
tree and priority R tree, variants of R tree, for performing
efficient indexing in a map-reduce framework. Priority tree can
be considered as a hybrid between K-dimensional tree and R tree
that define a given objects N-dimensional bounding volume as a
point in N-dimensions, represented by ordered pair of rectangles
enhancing quick Indexation [3]. Hilbert R tree, on other hand, can
be thought as an extension to B+ tree for multi-dimensional object
in spatial database achieving high degree of space utilization and
good response time. This is done by proposing an ordering on R
tree nodes by sorting rectangles according to Hilbert value of the
center of rectangles. Given the ordering, every node has a well-
defined set of sibling nodes. Thus, deferred splitting can be used.
By adjusting the split policy, the Hilbert R tree can achieve high
utilization as desired.

KEYWORDS-Map-reduce framework, Priority R-tree, K-
dimensional tree, Hilbert R-tree, Hilbert value, Spatial database.

I) INTRODUCTION

The map reduce is a widely used data parallel program
modeling for large scale data analysis. The framework
is shown to be scalable to thousands of computing
nodes and reliable on commodity clusters. Map-reduce
possess certain benefits compared to traditional file
system viz ease of use for novice database user, fault
tolerance, locality optimization and load balancing, very
large computation and dynamic scaling. In particular,
Hadoop, an open source implementation of map reduce
has become more and more popular in organization,
business companies and institutes. Programs in Hadoop
map reduce are expressed as map and reduce operations.
The map phase takes in a list of key-value pairs and
applies the programmer’s specified map function
independently on each pair in the list. The reduce phase
operates on a list, indexed by a key, of all corresponding
values and applies the reduce function on the values;
and outputs a list of key-value pairs. Each phase
involves distributed execution of tasks(application of
the user-defined functions on a part of the data). The
reduce phase must wait for all the map tasks to
complete, since it requires all the values corresponding

to each key. In order to reduce the network overhead, a
combiner is often used to aggregate over keys from map
tasks executing on the same node [4].
There are various clustering techniques employed in
map reduce environment namely K-means [7] which is
the most basic and simplest unsupervised learning
algorithms that solve the well-known clustering
problem. The procedure follows a simple and easy way
to classify a given data set to a certain number of
clusters. On the other hand, the canopy clustering
algorithm is an unsupervised pre-clustering algorithm,
often used as pre-processing step for the K-means
algorithm or the hierarchical clustering algorithm. It is
intended to speed up clustering operations on large data
sets, where using another algorithm directly may be
impractical due to the size of the data set. The algorithm
proceeds as follows:
 Cheaply partitioning the data into over lapping

subset(called “canopies”)
 Perform more expensive clustering, but only within

this canopies.
 Complexity analysis is another technique where most
of the work is done by the mapper and the work load is
pretty balanced. So the time complexity will be
O(k*n/p) where k is number of cluster, n is number of
data points and p is number of machines.
 The clustering technique is accompanied with various
indexing techniques that can be implemented using
balanced trees, B+ trees and Hashes. Map reduce
predominantly uses B, B+ tree for implementing
indexation. A balanced tree is a binary search tree that
automatically keeps its height(number of levels below
the root) small in the face of arbitrary item insertions
and deletions. The B tree is the classic disk-based data
structure for indexing records based on an ordered key
set. The B+ tree is a variant of the original B tree in
which all records are stored in the leaves and all leaves
are linked sequentially. The B+ tree is used as an
indexing method in relational database management
system. A Hash table or Hash map is a data structure
that uses a hash function to map identifying values,
known as keys, to the associated values. Thus, a hash
table implements an associative array. The hash
function is used to transform the key into the index of
an array element where the corresponding value is to be
sought.

II) THE EXISTING INDEXATION IN MAP-REDUCE
When working with large sets of data, it is often not
possible or desirable to maintain the entire structure in

 Vaishnavi S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3413-3418

3413

primary storage (RAM). Instead, a relatively small
portion of the data structure is maintained in primary
storage, and additional data is read from secondary
storage as needed. Unfortunately, a magnetic disk, the
most common form of secondary storage, is
significantly slower than random access memory
(RAM). In fact, the system often spends more time
retrieving data than actually processing data. Effective
optimization in map reduce is achieved through various
indexing algorithms and implementing trees for efficient
sorting of data. The traditional method of
implementation is B and B+ tree that are the descendent
of binary tree. The B-tree is a generalization of a binary
search tree in that a node can have more than two
children. The B-tree is optimized for systems that read
and write large blocks of data. For n greater than or
equal to one, the height of an n-key b-tree T of
height h with a minimum degree t greater than or equal
to 2,

In a B+ tree, in contrast to a B-tree, all records are
stored at the leaf level of the tree; only keys are stored
in interior nodes. The leaves (the bottom-most index
blocks) of the B+ tree are often linked to one another in
a linked list; this makes range queries or an (ordered)
iteration through the blocks simpler and more efficient
(though the aforementioned upper bound can be
achieved even without this addition). This does not
substantially increase space consumption or
maintenance on the tree. This illustrates one of the
significant advantages of a B+ tree over a B-tree; in a B-
tree, since not all keys are present in the leaves, such an
ordered linked list cannot be constructed. A B+ tree is
thus particularly useful as a database system index,
where the data typically resides on disk, as it allows the
B+-tree to actually provide an efficient structure for
housing the data itself [5].
However, the real-time data may also involve three-
dimensional objects like lines, polygons and so on.
Storage of spatial data is of great concern. To counter
the issue, map reduce started to develop R tree for
efficient indexation and storage of spatial data [6]. In
this regard, the base knowledge of spatial data is
considered to be of importance.
A. Spatial Database –An Overview
A Spatial database is a database that is optimized to
store and query data that is related to objects in space,
including points, lines and polygons [2]. While typical
databases can understand various numeric and character
types of data, additional functionality needs to be added
for databases to process spatial data types. Database
systems use indexes to quickly look up values and the
way that most databases index data is not optimal
for spatial queries. Instead, spatial databases use
a spatial index to speed up database operations. Spatial
indexes are used by spatial database to optimize spatial
queries. Indexes used by non-spatial databases cannot
effectively handle features such as how far two points
differ and whether points fall within a spatial area of
interest. Common spatial index methods includes R tree

(Typically the preferred method for indexing spatial
data. Objects are grouped using the minimum bounding
rectangle (MBR). Objects are added to an MBR within
the index that will lead to the smallest increase in its
size.), R+ tree (a variant of R tree for spatial data), R*
tree(R*-trees support point and spatial data at the same
time with a slightly higher cost than other R-trees)
B. Performance of B+ Tree and R Tree
The relative performance of B+ tree depends on
characteristics like work load composition, the system
resource available, the B+ tree structure and multi-
programming level. The R tree retrieve the spatial data
in an efficient manner while B tree and its variants are
employed only for linear database. The performance of
R tree in terms of space utilization, communication cost
and resource usage is found to be two to three times
more than that of B+ tree [5]. Further specification in
terms of graphs and comparison chart has been
presented in the following sections.

III) THE PROPOSED OPTIMIZATION USING

HILBERT AND PRIORITY R TREE
In order to handle spatial data efficiently, as required in
computer aided design and geo-data applications, a
database system needs an index mechanism that will
help it retrieve data item quickly according to the spatial
locations. However, traditional indexing methods are
not well suited to data objects of non-zero size located
in multi-dimensional spaces. An index based on object
spatial locations is desirable, but classical one-
dimensional database indexing structures are not
appropriate to multi-dimensional spatial searching.
Structures based on exact matching of values, such as
hash tables, are not useful because a range search is
required. Structures using one-dimensional ordering of
key values, such as B tree and its variants, do not work
because the search space is multi-dimensional. A Spatial
database consist of a collection of tuples representing
spatial objects, and each tuple has a unique identifier
which can be used to retrieve it. Hence we propose to
in-corporate Hilbert R tree and Priority R tree to handle
multi-dimensional data.
A. Hilbert R Tree and its Operation
There are two types of Hilbert R-tree, one for static
databases and one for dynamic databases. The
performance of R-trees depends on the quality of the
algorithm that clusters the data rectangles on a node.
Hilbert R-trees use space-filling curves, and specifically
the Hilbert curves, to impose a linear ordering on the
data rectangles. The space filling curves and specifically
the Hilbert curve are used to achieve better ordering of
multidimensional objects in the node. This ordering has
to be ‘good’, in the sense that it should group ‘similar’
data rectangles together, to minimize the area and
perimeter of the resulting Minimum Bounding
Rectangles (MBRs). Packed Hilbert R-trees are suitable
for static databases in which updates are very rare or in
which there are no updates at all. The clustering of data
is done by K-means algorithm [7].

 Vaishnavi S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3413-3418

3414

Figure 1: K means variation with data size

The dynamic Hilbert R-trees employ flexible deferred
splitting mechanism to increase the space utilization.
Every node has a well defined set of sibling nodes. By
adjusting the split policy the Hilbert R-tree can achieve
a degree of space utilization as high as is desired. This is
done by proposing an ordering on the R-tree nodes. The
Hilbert R-tree sorts rectangles according to the Hilbert
value of the center of the rectangles (i.e., MBR). (The
Hilbert value of a point is the length of the Hilbert curve
from the origin to the point.) Given the ordering, every
node has a well-defined set of sibling nodes; thus,
deferred splitting can be used. By adjusting the split
policy, the Hilbert R-tree can achieve as high utilization
as desired. To the contrary, other R-tree variants have
no control over the space utilization.
 1) Hilbert R Tree Structure: The Hilbert R-tree has the
following structure. A leaf node contains at most
Cl entries each of the form (R, obj _id) where Cl is the
capacity of the leaf, R is the MBR of the real object
(xlow, xhigh, ylow, yhigh) and obj-id is a pointer to the object
description record. The main difference between the
Hilbert R-tree and the R*-tree is that non-leaf nodes
also contain information about the LHVs (Largest
Hilbert Value). Thus, a non-leaf node in the Hilbert R-
tree contains at most Cn entries of the form (R, ptr,
LHV) where Cn is the capacity of a non-leaf node, R is
the MBR that encloses all the children of that node, ptr
is a pointer to the child node, and LHV is the largest
Hilbert value among the data rectangles enclosed by R.
The non-leaf node picks one of the Hilbert values of the
children to be the value of its own LHV, there is not
extra cost for calculating the Hilbert values of the MBR
of non-leaf nodes. The Hilbert values of the centers are
the numbers near the ‘x’ symbols (shown only for the
parent node ‘II’). The LHV’s are in [brackets]. Figure 3
shows how the tree of Figure 2 is stored on the disk; the
contents of the parent node ‘II’ are shown in more
detail. Every data rectangle in node ‘I’ has a Hilbert
value v ≤33; similarly every rectangle in node ‘II’ has a
Hilbert value greater than 33 and ≤ 107, etc.
A plain R-tree splits a node on overflow, creating two
nodes from the original one. This policy is called a 1-to-
2 splitting policy. It is possible also to defer the split,
waiting until two nodes split into three. This method is
referred to as the 2-to-3 splitting policy. In general, this
can be extended to s-to-(s+1) splitting policy; where s is
the order of the splitting policy. To implement the
order-s splitting policy, the overflowing node tries to
push some of its entries to one of its s - 1 siblings; if all

of them are full, then s-to-(s+1) split need to be done.
The s -1 siblings are called the cooperating siblings.

Figure 2: Data rectangles organized in a Hilbert R-tree
(Hilbert values and LHV’s are in Brackets)

Figure 3: Arrangement of tree on disk

 2) Searching: The searching algorithm is similar to the
one used in other R-tree variants. Starting from the root,
it descends the tree and examines all nodes that intersect
the query rectangle. At the leaf level, it reports all
entries that intersect the query window w as qualified
data items.
Algorithm--Search(node--Root,-rect--w)
S1. Search non-leaf nodes
Invoke Search for every entry whose MBR intersects
the query window w.
S2. Search leaf nodes
Report all entries that intersect the query window w as
candidates.

 3) Insertion: To insert a new rectangle r in the Hilbert
R-tree, the Hilbert value h of the center of the new
rectangle is used as a key. At each level the node with
the minimum LHV value greater than h of all its
siblings is chosen. When a leaf node is reached, the
rectangle r is inserted in its correct order according to h.
After a new rectangle is inserted in a leaf node
N, AdjustTree is called to fix the MBR and LHV values
in the upper-level nodes.
Algorithm Insert(node Root, rect r)
 /* Inserts a new rectangle r in the Hilbert R-tree. h is
the Hilbert value of the rectangle*/
I1. Find the appropriate leaf node
Invoke ChooseLeaf(r, h) to select a leaf node L in which
to place r.
I2. Insert r in a leaf node L
If L has an empty slot, insert r in L in the appropriate
place according to the Hilbert order and return.

 Vaishnavi S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3413-3418

3415

If L is full, invoke HandleOverflow(L,r), which will
return new leaf if split was inevitable,
I3. Propagate changes upward
Form a set S that contains L, its cooperating siblings
and the new leaf (if any)
Invoke AdjustTree(S).
I4. Grow tree taller
If node split propagation caused the root to split, create
a new root whose children are the two resulting nodes.
Algorithm--ChooseLeaf(rect--r,-int--h)
/* Returns the leaf node in which to place a new
rectangle r. */
C1. Initialize
Set N to be the root node.
C2. Leaf check
If N is a leaf_ return N.
C3. Choose subtree
If N is a non-leaf node, choose the entry (R, ptr, LHV)
with the minimum LHV value greater than h.
C4. Descend until a leaf is reached
Set N to the node pointed by ptr and repeat from C2.
Algorithm--AdjustTree(set--S)
/* S is a set of nodes that contains the node being
updated, its cooperating siblings (if overflow has
occurred) and the newly created node NN (if split has
occurred). The routine ascends from the leaf level
towards the root, adjusting MBR and LHV of nodes that
cover the nodes in S. It propagates splits (if any) */
A1.If---root---level---is---reached,-stop.
A2. Propagate node split upward
Let Np be the parent node of N. If N has been split, let
NN be the new node. Insert NN in Np in the correct
order according to its Hilbert value if there is room.
Otherwise, invoke HandleOverflow(Np , NN)
If Np is split, let PP be the new node.
A3. Adjust the MBR’s and LHV’s in the parent level
Let P be the set of parent nodes for the nodes in S.
Adjust the corresponding MBR’s and LHV’s of the
nodes in P appropriately.
A4. Move up to next level
Let S become the set of parent nodes P, with NN = PP,
if Np was split.
repeat from A1.

4) Deletion: In the Hilbert R-tree there is no need to re-
insert orphaned nodes whenever a father node
underflows. Instead, keys can be borrowed from the
siblings or the underflowing node is merged with its
siblings. This is possible because the nodes have a clear
ordering (according to Largest Hilbert Value, LHV); in
contrast, in R-trees there is no such concept concerning
sibling nodes. Notice that deletion operations require s
cooperating siblings, while insertion operations require
s - 1 siblings.
Algorithm-Delete(r):
D1. Find the host leaf:
Perform an exact match search to find the leaf node L
that contains r.
D2. Delete r :
Remove r from node L.
D3. If L underflows, borrow some entries from s
cooperating siblings.

If all the siblings are ready to underflow, merge s + 1 to
s nodes and adjust the resulting nodes.
D4. Adjust MBR and LHV in parent levels.
Form a set S that contains L and its cooperating siblings
(if underflow has occurred).
invoke AdjustTree(S).

5) Overflow Handling: The overflow handling
algorithm in the Hilbert R-tree treats the overflowing
nodes either by moving some of the entries to one of the
s - 1 cooperating siblings or by splitting s nodes into s
+1 nodes.
Algorithm---HandleOverflow(node---N,-rect---r)
/* return the new node if a split occurred */
H1. Let ε be a set that contains all the entries from N
and its s - 1 cooperating siblings.
H2.Add---r---to---ε
H3. If at least one of the s - 1 cooperating siblings is not
full, distribute ε evenly among the s nodes according to
Hilbert values.
H4. If all the s cooperating siblings are full, create a
new node NN and distribute ε evenly among the s+1
nodes according to Hilbert values return NN.
B. Priority R Tree
 The priority R tree is the hybrid of K-dimensional
tree and R tree that define an object’s N dimensional
bounding volume(Minimum Bounding Rectangle) as a
point in N dimension, represented by ordered pair of
rectangle. The leaf contain prioritized data. The
insertion and deletion operation follows the same
procedure as in Hilbert R tree but before answering a
window-query by traversing the sub-branches, the
prioritized R-tree first checks for overlap in its priority
nodes. The sub-branches is traversed (and constructed)
by checking whether the least value of the first
dimension of the query is above the value of the sub-
branches. This gives access to a quick indexation by the
value of the first dimension of the bounding box [3].
1) Performance Metric of Priority R Tree: The
performance metric of priority R tree is given by the
notation

O((N=B)^(1-1/d)+T/B)I/Os

where N is the number of d-dimensional (hyper-)
rectangles stored in the R-tree, B is the disk block size,
and T is the output size. This is significantly better than
other R tree variants, where a query may visit all N/B
leaves in the tree even when T=0. The performance of
priority R tree is efficiently higher than other R tree
variants and can be well suited to store and retrieve
distributed and spatial data.

IV) EVALUATION- B TREES AND R TREES
: A COMPARITIVE STUDY

 Numerous studies and various algorithms have been
proposed to improve the efficiency of data retrieval in a
map reduce environment for spatial data. B tree and its
variants like B+ tree are quite efficient in indexation for
fast retrieval of data. Several papers have also proposed
the in-corporation of Inverted indexing mechanism and
Incremental encoding and various similar techniques to
speed up the optimization process. This paper is an

 Vaishnavi S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3413-3418

3416

effort to induce the concept of R tree variants- Hilbert R
tree and Priority R tree for indexation in map reduce
environment especially for retrieving spatial data.
Moreover two important issues are covered by Hilbert
and Priority R tree:
 100% space utilization for spatial data in a map

reduce framework
 Good response time compared to B and B+ tree

 A. B+ Tree versus Hilbert R Tree Performance
The B+ tree can have one of the two fanouts- a high
fanout(200 entries/ page) or a low fanout(8 entries/
page). For a comparative study, we consider high fanout
case. The system configuration consist of a fixed value
for each of the following parameters: the workload, the
number of CPUs, the number of disks, the tree fanout,
and the buffer pool size. With these parameters in hand,
the performance of B+ tree is graphed.
Hilbert R tree, on the other hand, with same parametric
conditions show higher performance in high fanout
condition. The effectiveness of the technique lies in the
fact that it visits minimal number of nodes or less
number of files for searching spatial data in map reduce.
This tends to minimal search time producing optimized
result. Further R tree and its variants can be easily
added to any relational database system that supports
conventional access methods. Moreover the new
structure would work especially well in conjunction
with abstract data types and abstract indexes to
streamline the handling of spatial data. Hilbert R tree
achieves upto 28% saving in the number of pages
touched compared to R* tree. The comparison graph
varying between Multi-Programmin Level(MPL) and
through put using B+ tree and Hilbert R tree is shown.

Figure 4:HIGH FANOUT, SINGLE DISK

High fanout:80% Search:1 CPU:1 Disk:200 Bufs

B. Efficient Optimization With Priority R Tree
Priority R tree offers much more efficient space
utilization than Hilbert R tree as it completes the
searching process of highly prioritized data first. The
priority R tree combines K dimensional tree and R tree
thus facilitating the storage of spatial data. Hilbert R
tree significantly improve performance and decreases
insertion complexity while Priority R tree minimizes the
overlapping as low as possible. The bulk load
performance of Hilbert R tree and priority R tree is
graphed below.

TABLE I QUERY PERFORMANCE TABLE

 The priority R tree offers two to three times more
performance than Hilbert R tree in reading or writing
the data blocks. A comparative chart depicting the
performance of various indexing trees for different
parameters have also been provided, thus motivating the
readers to work on the implementation of Hilbert and
Priority R tree in a map reduce framework for
movement of spatial data.

Figure 5: Bulk loading performance

It is seen from the table that minimal number of files
searched and less input – output operations reasonably
contribute to efficient optimization of data retrieval in a
map reduce environment. It is also evident that Hilbert
and Priority R tree shows an effective optimization
compared to B tree or B+ tree indexation.

V) CONCLUSIONS AND FUTURE WORK
In this paper, we have produced our idea and a general
study for in-corporating Hilbert R tree and Priority R
tree for spatial data in a map reduce framework. The
pin-point portrayed here is introduction of Hilbert and
Priority R tree into the existing indexation mechanism
for spatial data in a map reduce framework proves to
make a fruitful foot-print in query optimization. The
existing indexation mechanism provide efficient data
retrieval but is limited only to linear data. The R tree
variants provide means for indexing spatial data, but
efficient space utilization and response time are key
concerns. Hilbert R tree accounts for 100% space
utilization and a good response time. However,
implementing these indexation with appropriate
algorithm and various joins in a map reduce
environment will be an issue for future research.

 Vaishnavi S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3413-3418

3417

REFERENCES
[1] Richard McCreadie, Craig Macdonald, Iadh Ounis. Information

Processing and Management. In ELSEVIER,2011.
[2] Ralf Hartmut Güting. An Introduction to Spatial Database

Systems. In VLDB Journal, 1994.
[3] Lars Arge, Mark de Berg, Herman Haverkort and Ke Yi. The

Priority R-Tree: A Practically Efficient and Worst-Case Optimal
R-Tree.In SIGMOD,2004.

[4] Karthik Kambatla, Naresh Rapolu, Suresh Jagannathan, Ananth
Grama. Asynchronous Algorithms in MapReduce.

[5] Srinivasan, Michael J Carey. Performance of B+ tree concurrency
control Algorithm. In VLDB,1993.

[6] Antonin Guttman. R tree: A dynamic indexing structure for spatial
searching. In ACM, National science foundation grant and Air
force office of scientific research grant,1984.

[7] Li-Yung Ho, Jan-Jan Wu, Pangfeng Liu. Optimal algorithms for
cross-rack communication optimization in map reduce
framework.

 Vaishnavi S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3413-3418

3418

