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ABSRACT: The Map-reduce has become one of the inevitable 
programming framework for developing distributed data storage 
and information retrieval (IR) [1]. Efficient method for mining data 
and its fast retrieval has become the key concern over years. 
Various indexing mechanisms have been developed in Hadoop 
Map-reduce framework, an open-source implementation of 
Google. The framework consist of two basic functions- the map() 
function which partition the input into smaller sub-problems and 
distribute them to worker nodes, the reduce() function which 
aggregate the sub-outputs from the worker nodes to retrieve the 
final output. Map-reduce possess certain benefits compared to 
traditional file system viz locality optimization, very large 
computation and so on. Hadoop Distributed File System(HDFS) 
use B+ tree and various other indexing mechanisms where the 
storage and optimized retrieval of spatial data is an issue[2].  
This paper provide an intuitive approach to incorporate Hilbert R 
tree and priority R tree, variants of R tree, for performing 
efficient indexing in a map-reduce framework. Priority tree can 
be considered as a hybrid between K-dimensional tree and R tree 
that define a given objects N-dimensional bounding volume as a 
point in N-dimensions, represented by ordered pair of rectangles 
enhancing quick Indexation [3]. Hilbert R tree, on other hand, can 
be thought as an extension to B+ tree for multi-dimensional object 
in spatial database achieving high degree of space utilization and 
good response time. This is done by proposing an ordering on R 
tree nodes by sorting rectangles according to Hilbert value of the 
center of rectangles. Given the ordering, every node has a well-
defined set of sibling nodes. Thus, deferred splitting can be used. 
By adjusting the split policy, the Hilbert R tree can achieve high 
utilization as desired. 
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I) INTRODUCTION 

The map reduce is a widely used data parallel program 
modeling for large scale data analysis. The framework 
is shown to be scalable to thousands of computing 
nodes and reliable on commodity clusters. Map-reduce 
possess certain benefits compared to traditional file 
system viz ease of use for novice database user, fault 
tolerance, locality optimization and load balancing, very 
large computation and dynamic scaling. In particular, 
Hadoop, an open source implementation of map reduce 
has become more and more popular in organization, 
business companies and institutes. Programs in Hadoop 
map reduce are expressed as map and reduce operations. 
The map phase takes in a list of key-value pairs and 
applies the programmer’s specified map function 
independently on each pair in the list. The reduce phase 
operates on a list, indexed by a key, of all corresponding 
values and applies the reduce function on the values; 
and outputs a list of key-value pairs. Each phase 
involves distributed execution of tasks(application of 
the user-defined functions on a part of the data). The 
reduce phase must wait for all the map tasks to 
complete, since it requires all the values corresponding 

to each key. In order to reduce the network overhead, a 
combiner is often used to aggregate over keys from map 
tasks executing on the same node [4]. 
There are various clustering techniques employed in 
map reduce environment namely K-means [7]  which is 
the most basic and simplest unsupervised learning 
algorithms that solve the well-known clustering 
problem. The procedure follows a simple and easy way 
to classify a given data set to a certain number of 
clusters. On the other hand, the canopy clustering 
algorithm is an unsupervised pre-clustering algorithm, 
often used as pre-processing step for the K-means 
algorithm or the hierarchical clustering algorithm. It is 
intended to speed up clustering operations on large data 
sets, where using another algorithm directly may be 
impractical due to the size of the data set. The algorithm 
proceeds as follows: 
 Cheaply partitioning the data into over lapping 

subset(called “canopies”) 
 Perform more expensive clustering, but only within 

this canopies. 
 Complexity analysis is another technique where most 
of the work is done by the mapper and the work load is 
pretty balanced. So the time complexity will be 
O(k*n/p) where k is number of cluster, n is number of 
data points and p is number of machines. 
 The clustering technique is accompanied with various 
indexing techniques that can be implemented using 
balanced trees, B+ trees and Hashes. Map reduce 
predominantly uses B, B+ tree for implementing 
indexation. A balanced tree is a binary search tree that 
automatically keeps its height(number of levels below 
the root) small in the face of arbitrary item insertions 
and deletions. The B tree is the classic disk-based data 
structure for indexing records based on an ordered key 
set. The B+ tree is a variant of the original B tree in 
which all records are stored in the leaves and all leaves 
are linked sequentially. The B+ tree is used as an 
indexing method in relational database management 
system. A Hash table or Hash map is a data structure 
that uses a hash function to map identifying values, 
known as keys, to the associated values. Thus, a hash 
table implements an associative array. The hash 
function is used to transform the key into the index of 
an array element where the corresponding value is to be 
sought. 
 

II) THE EXISTING INDEXATION IN MAP-REDUCE 
When working with large sets of data, it is often not 
possible or desirable to maintain the entire structure in 
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primary storage (RAM). Instead, a relatively small 
portion of the data structure is maintained in primary 
storage, and additional data is read from secondary 
storage as needed. Unfortunately, a magnetic disk, the 
most common form of secondary storage, is 
significantly slower than random access memory 
(RAM). In fact, the system often spends more time 
retrieving data than actually processing data. Effective 
optimization in map reduce is achieved through various 
indexing algorithms and implementing trees for efficient 
sorting of data. The traditional method of 
implementation is B and B+ tree that are the descendent 
of binary tree. The B-tree is a generalization of a binary 
search tree in that a node can have more than two 
children. The B-tree is optimized for systems that read 
and write large blocks of data. For n greater than or 
equal to one, the height of an n-key b-tree T of 
height h with a minimum degree t greater than or equal 
to 2,  

                          
In a B+ tree, in contrast to a B-tree, all records are 
stored at the leaf level of the tree; only keys are stored 
in interior nodes. The leaves (the bottom-most index 
blocks) of the B+ tree are often linked to one another in 
a linked list; this makes range queries or an (ordered) 
iteration through the blocks simpler and more efficient 
(though the aforementioned upper bound can be 
achieved even without this addition). This does not 
substantially increase space consumption or 
maintenance on the tree. This illustrates one of the 
significant advantages of a B+ tree over a B-tree; in a B-
tree, since not all keys are present in the leaves, such an 
ordered linked list cannot be constructed. A B+ tree is 
thus particularly useful as a database system index, 
where the data typically resides on disk, as it allows the 
B+-tree to actually provide an efficient structure for 
housing the data itself [5].  
However, the real-time data may also involve three-
dimensional objects like lines, polygons and so on. 
Storage of spatial data is of great concern. To counter 
the issue, map reduce started to develop R tree for 
efficient indexation and storage of spatial data [6]. In 
this regard, the base knowledge of spatial data is 
considered to be of importance.  
A. Spatial Database –An Overview 
A Spatial database is a database that is optimized to 
store and query data that is related to objects in space, 
including points, lines and polygons [2]. While typical 
databases can understand various numeric and character 
types of data, additional functionality needs to be added 
for databases to process spatial data types. Database 
systems use indexes to quickly look up values and the 
way that most databases index data is not optimal 
for spatial queries. Instead, spatial databases use 
a spatial index to speed up database operations. Spatial 
indexes are used by spatial database to optimize spatial 
queries. Indexes used by non-spatial databases cannot 
effectively handle features such as how far two points 
differ and whether points fall within a spatial area of 
interest. Common spatial index methods includes R tree 

(Typically the preferred method for indexing spatial 
data. Objects are grouped using the minimum bounding 
rectangle (MBR). Objects are added to an MBR within 
the index that will lead to the smallest increase in its 
size.), R+ tree (a variant of R tree for spatial data), R* 
tree(R*-trees support point and spatial data at the same 
time with a slightly higher cost than other R-trees)  
B. Performance of B+ Tree and R Tree 
The relative performance of B+ tree depends on 
characteristics like work load composition, the system 
resource available, the B+ tree structure and multi-
programming level. The R tree retrieve the spatial data 
in an efficient manner while B tree and its variants are 
employed only for linear database. The performance of 
R tree in terms of space utilization, communication cost 
and resource usage is found to be two to three times 
more than that of B+ tree [5]. Further specification in 
terms of graphs and comparison chart has been 
presented in the following sections. 
 

III) THE PROPOSED OPTIMIZATION USING             

HILBERT AND PRIORITY R TREE 
In order to handle spatial data efficiently, as required in 
computer aided design and geo-data applications, a 
database system needs an index mechanism that will 
help it retrieve data item quickly according to the spatial 
locations. However, traditional indexing methods are 
not well suited to data objects of non-zero size located 
in multi-dimensional spaces. An index based on object 
spatial locations is desirable, but classical one-
dimensional database indexing structures are not 
appropriate to multi-dimensional spatial searching. 
Structures based on exact matching of values, such as 
hash tables, are not useful because a range search is 
required. Structures using one-dimensional ordering of 
key values, such as B tree and its variants, do not work 
because the search space is multi-dimensional. A Spatial 
database consist of a collection of tuples representing 
spatial objects, and each tuple has a unique identifier 
which can be used to retrieve it. Hence we propose to 
in-corporate Hilbert R tree and Priority R tree to handle 
multi-dimensional data. 
A. Hilbert R Tree and its Operation 
There are two types of Hilbert R-tree, one for static 
databases and one for dynamic databases. The 
performance of R-trees depends on the quality of the 
algorithm that clusters the data rectangles on a node. 
Hilbert R-trees use space-filling curves, and specifically 
the Hilbert curves, to impose a linear ordering on the 
data rectangles. The space filling curves and specifically 
the Hilbert curve are used to achieve better ordering of 
multidimensional objects in the node. This ordering has 
to be ‘good’, in the sense that it should group ‘similar’ 
data rectangles together, to minimize the area and 
perimeter of the resulting Minimum Bounding 
Rectangles (MBRs). Packed Hilbert R-trees are suitable 
for static databases in which updates are very rare or in 
which there are no updates at all. The clustering of data 
is done by K-means algorithm [7].  
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Figure 1: K means variation with data size 

 
The dynamic Hilbert R-trees employ flexible deferred 
splitting mechanism to increase the space utilization. 
Every node has a well defined set of sibling nodes. By 
adjusting the split policy the Hilbert R-tree can achieve 
a degree of space utilization as high as is desired. This is 
done by proposing an ordering on the R-tree nodes. The 
Hilbert R-tree sorts rectangles according to the Hilbert 
value of the center of the rectangles (i.e., MBR). (The 
Hilbert value of a point is the length of the Hilbert curve 
from the origin to the point.) Given the ordering, every 
node has a well-defined set of sibling nodes; thus, 
deferred splitting can be used. By adjusting the split 
policy, the Hilbert R-tree can achieve as high utilization 
as desired. To the contrary, other R-tree variants have 
no control over the space utilization. 
 1) Hilbert R Tree Structure: The Hilbert R-tree has the 
following structure. A leaf node contains at most 
Cl entries each of the form (R, obj _id) where Cl is the 
capacity of the leaf, R is the MBR of the real object 
(xlow, xhigh, ylow, yhigh) and obj-id is a pointer to the object 
description record. The main difference between the 
Hilbert R-tree and the R*-tree is that non-leaf nodes 
also contain information about the LHVs (Largest 
Hilbert Value). Thus, a non-leaf node in the Hilbert R-
tree contains at most Cn entries of the form (R, ptr, 
LHV) where Cn is the capacity of a non-leaf node, R is 
the MBR that encloses all the children of that node, ptr 
is a pointer to the child node, and LHV is the largest 
Hilbert value among the data rectangles enclosed by R. 
The non-leaf node picks one of the Hilbert values of the 
children to be the value of its own LHV, there is not 
extra cost for calculating the Hilbert values of the MBR 
of non-leaf nodes. The Hilbert values of the centers are 
the numbers near the ‘x’ symbols (shown only for the 
parent node ‘II’). The LHV’s are in [brackets]. Figure 3 
shows how the tree of Figure 2 is stored on the disk; the 
contents of the parent node ‘II’ are shown in more 
detail. Every data rectangle in node ‘I’ has a Hilbert 
value v ≤33; similarly every rectangle in node ‘II’ has a 
Hilbert value greater than 33 and ≤ 107, etc.  
A plain R-tree splits a node on overflow, creating two 
nodes from the original one. This policy is called a 1-to-
2 splitting policy. It is possible also to defer the split, 
waiting until two nodes split into three. This method is 
referred to as the 2-to-3 splitting policy. In general, this 
can be extended to s-to-(s+1) splitting policy; where s is 
the order of the splitting policy. To implement the 
order-s splitting policy, the overflowing node tries to 
push some of its entries to one of its s - 1 siblings; if all 

of them are full, then s-to-(s+1) split need to be done. 
The s -1 siblings are called the cooperating siblings.  

Figure 2: Data rectangles organized in a Hilbert R-tree 
(Hilbert values and LHV’s are in Brackets) 

 

Figure 3: Arrangement of tree on disk 
 
 2) Searching: The searching algorithm is similar to the 
one used in other R-tree variants. Starting from the root, 
it descends the tree and examines all nodes that intersect 
the query rectangle. At the leaf level, it reports all 
entries that intersect the query window w as qualified 
data items. 
Algorithm--Search(node--Root,-rect--w) 
S1. Search non-leaf nodes 
Invoke Search for every entry whose MBR intersects 
the query window w. 
S2. Search leaf nodes 
Report all entries that intersect the query window w as 
candidates. 
 
 3) Insertion: To insert a new rectangle r in the Hilbert 
R-tree, the Hilbert value h of the center of the new 
rectangle is used as a key. At each level the node with 
the minimum LHV value greater than h of all its 
siblings is chosen. When a leaf node is reached, the 
rectangle r is inserted in its correct order according to h. 
After a new rectangle is inserted in a leaf node 
N, AdjustTree is called to fix the MBR and LHV values 
in the upper-level nodes. 
Algorithm Insert(node Root, rect r) 
 /* Inserts a new rectangle r in the Hilbert R-tree. h is 
the Hilbert value of the rectangle*/ 
I1. Find the appropriate leaf node 
Invoke ChooseLeaf(r, h) to select a leaf node L in which 
to place r. 
I2. Insert r in a leaf node L 
If L has an empty slot, insert r in L in the appropriate 
place according to the Hilbert order and return. 

 Vaishnavi S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3413-3418

3415



If L is full, invoke HandleOverflow(L,r), which will 
return new leaf if split was inevitable, 
I3. Propagate changes upward 
Form a set S that contains L, its cooperating siblings 
and the new leaf (if any) 
Invoke AdjustTree(S). 
I4. Grow tree taller 
If node split propagation caused the root to split, create 
a new root whose children are the two resulting nodes. 
Algorithm--ChooseLeaf(rect--r,-int--h) 
/* Returns the leaf node in which to place a new 
rectangle r. */ 
C1. Initialize 
Set N to be the root node. 
C2. Leaf check 
If N is a leaf_ return N. 
C3. Choose subtree 
If N is a non-leaf node, choose the entry (R, ptr, LHV) 
with the minimum LHV value greater than h. 
C4. Descend until a leaf is reached 
Set N to the node pointed by ptr and repeat from C2. 
Algorithm--AdjustTree(set--S) 
/* S is a set of nodes that contains the node being 
updated, its cooperating siblings (if overflow has 
occurred) and the newly created node NN (if split has 
occurred). The routine ascends from the leaf level 
towards the root, adjusting MBR and LHV of nodes that 
cover the nodes in S. It propagates splits (if any) */ 
A1.If---root---level---is---reached,-stop. 
A2. Propagate node split upward 
Let Np be the parent node of N. If N has been split, let 
NN be the new node. Insert NN in Np in the correct 
order according to its Hilbert value if there is room. 
Otherwise, invoke HandleOverflow(Np , NN ) 
If Np is split, let PP be the new node. 
A3. Adjust the MBR’s and LHV’s in the parent level 
Let P be the set of parent nodes for the nodes in S. 
Adjust the corresponding MBR’s and LHV’s of the 
nodes in P appropriately. 
A4. Move up to next level 
Let S become the set of parent nodes P, with NN = PP, 
if Np was split. 
repeat from A1. 
 
4) Deletion: In the Hilbert R-tree there is no need to re-
insert orphaned nodes whenever a father node 
underflows. Instead, keys can be borrowed from the 
siblings or the underflowing node is merged with its 
siblings. This is possible because the nodes have a clear 
ordering (according to Largest Hilbert Value, LHV); in 
contrast, in R-trees there is no such concept concerning 
sibling nodes. Notice that deletion operations require s 
cooperating siblings, while insertion operations require 
s - 1 siblings. 
Algorithm-Delete(r): 
D1. Find the host leaf: 
Perform an exact match search to find the leaf node L 
that contains r. 
D2. Delete r : 
Remove r from node L. 
D3. If L underflows, borrow some entries from s 
cooperating siblings. 

If all the siblings are ready to underflow, merge s + 1 to 
s nodes and adjust the resulting nodes. 
D4. Adjust MBR and LHV in parent levels. 
Form a set S that contains L and its cooperating siblings 
(if underflow has occurred). 
invoke AdjustTree(S). 
 
5) Overflow Handling: The overflow handling 
algorithm in the Hilbert R-tree treats the overflowing 
nodes either by moving some of the entries to one of the 
s - 1 cooperating siblings or by splitting s nodes into s 
+1 nodes. 
Algorithm---HandleOverflow(node---N,-rect---r) 
/* return the new node if a split occurred */ 
H1. Let ε be a set that contains all the entries from N 
and its s - 1 cooperating siblings. 
H2.Add---r---to---ε 
H3. If at least one of the s - 1 cooperating siblings is not 
full, distribute ε evenly among the s nodes according to 
Hilbert values. 
H4. If all the s cooperating siblings are full, create a 
new node NN and distribute ε evenly among the s+1 
nodes according to Hilbert values return NN. 
B. Priority R Tree 
     The priority R tree is the hybrid of K-dimensional 
tree and R tree that define an object’s N dimensional 
bounding volume(Minimum Bounding Rectangle) as a 
point in N dimension, represented by ordered pair of 
rectangle. The leaf contain prioritized data. The 
insertion and deletion operation follows the same 
procedure as in Hilbert R tree but before answering a 
window-query by traversing the sub-branches, the 
prioritized R-tree first checks for overlap in its priority 
nodes. The sub-branches is traversed (and constructed) 
by checking whether the least value of the first 
dimension of the query is above the value of the sub-
branches. This gives access to a quick indexation by the 
value of the first dimension of the bounding box [3]. 
1) Performance Metric of Priority R Tree: The 
performance metric of priority R tree is given by the 
notation  
 
O((N=B)^(1-1/d)+T/B)I/Os 
 
where N is the number of d-dimensional (hyper-) 
rectangles stored in the R-tree, B is the disk block size, 
and T is the output size. This is significantly better than 
other R tree variants, where a query may visit all N/B 
leaves in the tree even when T=0. The performance of 
priority R tree is efficiently higher than other R tree 
variants and can be well suited to store and retrieve 
distributed and spatial data.   
 

IV) EVALUATION- B TREES AND R TREES 
: A COMPARITIVE STUDY 

     Numerous studies and various algorithms have been 
proposed to improve the efficiency of data retrieval in a 
map reduce environment for spatial data. B tree and its 
variants like B+ tree are quite efficient in indexation for 
fast retrieval of data. Several papers have also proposed 
the in-corporation of Inverted indexing mechanism and 
Incremental encoding and various similar techniques to 
speed up the optimization process. This paper is an 
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effort to induce the concept of R tree variants- Hilbert R 
tree and Priority R tree for indexation in map reduce 
environment especially for retrieving spatial data. 
Moreover two important issues are covered by Hilbert 
and Priority R tree: 
 100% space utilization for spatial data in a map 

reduce framework 
 Good response time compared to B and B+ tree 
 
 A. B+ Tree versus Hilbert R Tree Performance 
The B+ tree can have one of the two fanouts- a high 
fanout(200 entries/ page) or a low fanout(8 entries/ 
page). For a comparative study, we consider high fanout 
case. The system configuration consist of a fixed value 
for each of the following parameters: the workload, the 
number of CPUs, the number of disks, the tree fanout, 
and the buffer pool size. With these parameters in hand, 
the performance of B+ tree is graphed.  
Hilbert R tree, on the other hand, with same parametric 
conditions show higher performance in high fanout 
condition.  The effectiveness of the technique lies in the 
fact that it visits minimal number of nodes or less 
number of files for searching spatial data in map reduce. 
This tends to minimal search time producing optimized 
result. Further R tree and its variants can be easily 
added to any relational database system that supports 
conventional access methods. Moreover the new 
structure would work especially well in conjunction 
with abstract data types and abstract indexes to 
streamline the handling of spatial data. Hilbert R tree 
achieves upto 28% saving in the number of pages 
touched compared to R* tree. The comparison graph 
varying between Multi-Programmin Level(MPL) and 
through put using B+ tree and Hilbert R tree is shown. 
                                                                        

 
Figure 4:HIGH FANOUT, SINGLE DISK 

High fanout:80% Search:1 CPU:1 Disk:200 Bufs 
 
B. Efficient Optimization With Priority R Tree 
Priority R tree offers much more efficient space 
utilization than Hilbert R tree as it completes the 
searching process of highly prioritized data first. The 
priority R tree combines K dimensional tree and R tree 
thus facilitating the storage of spatial data. Hilbert R 
tree significantly improve performance and decreases 
insertion complexity while Priority R tree minimizes the 
overlapping as low as possible. The bulk load 
performance of Hilbert R tree and priority R tree is 
graphed below. 

TABLE I QUERY PERFORMANCE TABLE 

 
     The priority R tree offers two to three times more 
performance than Hilbert R tree in reading or writing 
the data blocks. A comparative chart depicting the 
performance of various indexing trees for different 
parameters have also been provided, thus motivating the 
readers to work on the implementation of Hilbert and 
Priority R tree in a map reduce framework for 
movement of spatial data.  

 
Figure 5: Bulk loading performance 

 
It is seen from the table that minimal number of files 
searched and less input – output operations reasonably 
contribute to efficient optimization of data retrieval in a 
map reduce environment. It is also evident that Hilbert 
and Priority R tree shows an effective optimization 
compared to B tree or B+ tree indexation. 
 

V) CONCLUSIONS AND FUTURE WORK 
In this paper, we have produced our idea and a general 
study for in-corporating Hilbert R tree and Priority R 
tree for spatial data in a map reduce framework. The 
pin-point portrayed here is introduction of Hilbert and 
Priority R tree into the existing indexation mechanism 
for spatial data in a map reduce framework proves to 
make a fruitful foot-print in query optimization. The 
existing indexation mechanism provide efficient data 
retrieval but is limited only to linear data. The R tree 
variants provide means for indexing spatial data, but 
efficient space utilization and response time are key 
concerns. Hilbert R tree accounts for 100% space 
utilization and a good response time. However, 
implementing these indexation with appropriate 
algorithm and various joins in a map reduce 
environment will be an issue for future research. 
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